推荐给周围的中学生

这篇书评可能有关键情节透露
之前有一个新闻说,中小学以后要开展人工智能教学,结果很多人来嘲讽。我就想起来虽然我大四的时候才第一次用C++去自己写BP-ANN的代码,其大致原理和概念我中学的时候就已经熟悉了。其实九十年代以来,有很多期刊、学位论文、教材、手册等出版物上都会有这方面的概念性介绍,很难不注意到。
我毕竟不是应用数学或计算机类的,之前我对这种最简单的ANN的印象就是一种什么工作都可以掺和一下,效果可能很好也可能很差的黑箱模型,十多年前已经过时(起码也得来个SVM啊!)但最近因为深度学习又再次走红的工具。Make Your Own Neural Network这本书对我显然是过于简单了,但我居然从每一部分都学到了非常多的新的东西,它让我对ANN的认识整个提升了一个层次。
这本书最让人惊讶的一部分就是模型优化部分了。本来我以为是一个玩具代码,没想到其表现真正达到了工业级别。优化后对手写数字的识别率逼近98%,而它仅仅是一个三层的全连接的最朴素的BP-ANN!
作者把这本书写的非常简单,而可以看出来他的功力其实很强。如果你有基本的机器学习知识的话,可以看出他把很多重要的概念展现于极为简单的例子之中。比如XOR问题,超参数,学习率,过拟合,模型容量等等概念,他可能没有明确的说出来,但都有点到。中学生如果能吃透这本书,以后接触和进入真正的机器学习将会非常顺畅。
作者功力强大的地方还体现在,他把ANN的其实还挺复杂的概念讲得很清楚。值得承认,我之前虽然用过、写过ANN,但我很多公式怎么来的、为什么这么来的都还是糊涂的。这本书的目标读者可是没有微积分和线性代数基础的人士,我感觉至少稍微花点功夫这些人都能把ANN的具体原理和细节弄得非常清楚了。
最后,作者一定也是科研界老油条,他搭起来模型之后,调教的方法非常学院派,这一段儿我甚至有种读到论文的感觉。这样的内容让中学生看到也是有好处的,他们会建立起来一个有条理的思维方式。
真是生不逢时,我高中的时候没有(流行)python,没有人开展人工智能的教学,没人写出这么有意思的科普读物,于是错过了很多有趣的东西啊。
P.S. 他们的这个代码写的也很不错,我学习到了一些风格。
我毕竟不是应用数学或计算机类的,之前我对这种最简单的ANN的印象就是一种什么工作都可以掺和一下,效果可能很好也可能很差的黑箱模型,十多年前已经过时(起码也得来个SVM啊!)但最近因为深度学习又再次走红的工具。Make Your Own Neural Network这本书对我显然是过于简单了,但我居然从每一部分都学到了非常多的新的东西,它让我对ANN的认识整个提升了一个层次。
这本书最让人惊讶的一部分就是模型优化部分了。本来我以为是一个玩具代码,没想到其表现真正达到了工业级别。优化后对手写数字的识别率逼近98%,而它仅仅是一个三层的全连接的最朴素的BP-ANN!
作者把这本书写的非常简单,而可以看出来他的功力其实很强。如果你有基本的机器学习知识的话,可以看出他把很多重要的概念展现于极为简单的例子之中。比如XOR问题,超参数,学习率,过拟合,模型容量等等概念,他可能没有明确的说出来,但都有点到。中学生如果能吃透这本书,以后接触和进入真正的机器学习将会非常顺畅。
作者功力强大的地方还体现在,他把ANN的其实还挺复杂的概念讲得很清楚。值得承认,我之前虽然用过、写过ANN,但我很多公式怎么来的、为什么这么来的都还是糊涂的。这本书的目标读者可是没有微积分和线性代数基础的人士,我感觉至少稍微花点功夫这些人都能把ANN的具体原理和细节弄得非常清楚了。
最后,作者一定也是科研界老油条,他搭起来模型之后,调教的方法非常学院派,这一段儿我甚至有种读到论文的感觉。这样的内容让中学生看到也是有好处的,他们会建立起来一个有条理的思维方式。
真是生不逢时,我高中的时候没有(流行)python,没有人开展人工智能的教学,没人写出这么有意思的科普读物,于是错过了很多有趣的东西啊。
P.S. 他们的这个代码写的也很不错,我学习到了一些风格。